An Adaptive Fuzzy Sliding-Mode Controller Design for Walking Control with Functional Electrical Stimulation: A Computer Simulation Study
نویسندگان
چکیده
A major challenge to developing neuroprostheses for walking and to widespread acceptance of these walking systems is the design of a robust control strategy that provides satisfactory tracking performance, to be robust against time-varying properties of neuromusculoskeletal dynamics, day-today variations, muscle fatigue, and external disturbances, and to be easy to apply without requiring offline identification during different experiment sessions. The lower extremities of human walking are a highly nonlinear, highly time-varying, multi-actuator, multi-segment with highly inter-segment coupling, and inherently unstable system. Moreover, there always exist severe structured and unstructured uncertainties such as spasticity, muscle fatigue, external disturbances, and unmodeled dynamics. Robust control design for such nonlinear uncertain multi-input multi-output system still remains as an open problem. In this paper we present a novel robust control strategy that is based on combination of adaptive fuzzy control with a new well-defined sliding-mode control (SMC) with strong reachability for control of walking in paraplegic subjects. Based on the universal approximation theorem, fuzzy logic systems are employed to approximate the neuromusculoskeletal dynamics and an adaptive fuzzy controller is designed by using Lyapunov stability theory to compensate for approximation errors. The proposed control strategy has been evaluated on a planar model of bipedal locomotion as a virtual patient. The results indicate that the proposed strategy provides accurate tracking control with fast convergence during different conditions of operation, and could generate control signals to compensate the effects of muscle fatigue, system parameter variations, and external disturbances. Interesting observation is that the controller generates muscle excitation that mimic those observed during normal walking.
منابع مشابه
An adaptive modified fuzzy-sliding mode longitudinal control design and simulation for vehicles equipped with ABS system
In order to improve the safety and longitudinal stability of a vehicle equipped with standard ABS system, this paper, analyzes the basic principles of vehicles stability and proposes a control strategy based on fuzzy adaptive control which will adjust PID gain parameters, using genetic algorithm. A linear three-degree-of-freedom (DOF) vehicle model was set up in Simulink and the stability test ...
متن کاملLoad Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control
This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...
متن کاملSensorless Indirect Field Oriented Control of Single-sided Linear Induction Motor With a Novel Sliding Mode MRAS Speed Estimator
This paper proposes a new sliding mode control (SMC) based model reference adaptive system (MRAS) for sensorless indirect field oriented control (IFOC) of a single-sided linear induction motor (SLIM). The operation of MRAS speed estimators dramatically depends on adaptation mechanism. Fixed-gain PI controller is conventionally used for this purpose which may fail to estimate the speed correctl...
متن کاملDesigninga Neuro-Sliding Mode Controller for Networked Control Systems with Packet Dropout
This paper addresses control design in networked control system by considering stochastic packet dropouts in the forward path of the control loop. The packet dropouts are modelled by mutually independent stochastic variables satisfying Bernoulli binary distribution. A sliding mode controller is utilized to overcome the adverse influences of stochastic packet dropouts in networked control system...
متن کاملTrajectory tracking of under-actuated nonlinear dynamic robots: Adaptive fuzzy hierarchical terminal sliding-mode control
In recent years, underactuated nonlinear dynamic systems trajectory tracking, such as space robots and manipulators with structural flexibility, has become a major field of interest due to the complexity and high computational load of these systems. Hierarchical sliding mode control has been investigated recently for these systems; however, the instability phenomena will possibly occur, especia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011